Войти
Портал государственных закупок
  • Как сварить сгущенное молоко в домашних условиях Сгущенное молоко в домашних
  • Типы химических реакций в органической химии
  • Третий этап сестринского процесса – планирование ухода Создание условий для соблюдения режима
  • Боевые действия на южном сахалине Вечный огонь памяти
  • Коктейль "пина-колада" в ананасе
  • Рецепты ароматной курицы с яблоками в духовке: целиком и кусочками
  • Стационарные характеристики процессов размножения и гибели. Процесс чистого размножения Нужна помощь по изучению какой-либы темы

    Стационарные характеристики процессов размножения и гибели. Процесс чистого размножения Нужна помощь по изучению какой-либы темы

    Один из важнейших случаев цепей Маркова известен под названием процесса гибели и размножения. Этот процесс может быть с дискретным или непрерывным временем, а определяющее его условие состоит в том, что допускаются переходы только в соседние состояния.

    Рассмотрим процесс гибели и размножения с непрерывным временем. Такой процесс является моделью изменений в численности популяции.

    Процесс находится в состоянии Ей, если объем (численность) популяции равен к; переход в состояние Ек соответствует гибели одного члена популяции, а переход в состояние Ек+ - рождению.

    Этот процесс можно рассматривать как модель СМО, в которой Ек соответствует к заявок в системе, а переход в состояние Ек- или Ек+ - уходу заявки из системы или ее приходу.

    Для процесса гибели и размножения с множеством состояний 0, 1,2, ... должны выполняться следующие условия:

    Здесь P(+i; bt; к) - вероятность i рождений за время bt при условии, что численность популяции равна к ; P(-i; bt; к) - вероятность i гибелей при тех же условиях.

    Согласно этим условиям кратные рождения, кратные гибели и одновременные рождения и гибели в течение малого промежутка времени запрещены в том смысле, что вероятность этих кратных событий имеет порядок малости о(6г). Это свойство вытекает из свойства экспоненциального распределения, как было показано ранее.

    Найдем вероятность того, что объем популяции в некоторый момент времени равен к р(к, t) = P.

    Рассмотрим изменение объема популяции в промежутке времени (t, t + 5/). В момент времени t + bt процесс будет находиться в состоянии Ек, если произошло одно из трех взаимно исключающих друг друга и образующих полную группу событий:

    • 1) в момент времени t объем популяции равнялся А: и за время bt состояние не изменилось;
    • 2) в момент времени t объем популяции равнялся к - 1 и за время bt родился один член популяции;
    • 3) в момент времени t объем популяции равнялся к + 1 и за время bt погиб один член популяции.

    Тогда вероятность того, что в момент времени t + bt процесс будет находиться в состоянии Ек, равна

    Приведенное равенство имеет смысл только при к > О, поскольку популяция не может состоять из (-1) члена. Граничное равенство при к = О имеет вид:

    Кроме того, должно выполняться условие нормировки

    Выделяя в уравнениях (49.3) и (49.5) р(к) и деля на Ьк получим

    Переходя к пределу при bt -> 0, имеем:

    Таким образом, рассматриваемый вероятностный процесс описывается системой линейных дифференциальных уравнений. Эти уравнения можно получить непосредственно на основе диаграммы состояний (рис. 49.2).

    Рис. 49.2.

    Состояние Ek обозначается овалом, в котором записывается число к. Переходы между состояниями обозначаются стрелками, на которых представлены интенсивности переходов.

    Разность между интенсивностью, с которой система попадает в состояние Ek, и интенсивностью, с которой она покидает его, должна равняться интенсивности изменения потока в этом состоянии.

    Интенсивность потока в состояние

    Интенсивность потока из состояния ~

    Разность между ними равна эффективной интенсивности потока вероятностей в состояние

    Решение этой системы в общем виде невозможно. Модель даже простой системы является чрезвычайно сложной и трудно анализируемой. Если рассматривать СМО более сложного вида, то вычислительные трудности будут еще более высокими. Поэтому обычно рассматривают решения системы (49.3) - (49.4) в установившемся режиме при t -> оо, р"(к; t) -> 0,р(к, t) -> р{к) = const.

    Процесс чистого размножения

    Для этого процесса р*=О, А* = А = const. Его можно рассматривать как модель потока заявок, поступивших в СМО. Система уравнений для этого процесса имеет вид:

    Пусть начальные условия следующие:

    Тогда и при к= 1 получим: ехр

    Решение этого уравнения естьр (; /) = А/ exp (-АД По индукции можно получить, что

    Таким образом, вероятности распределены по закону Пуассона.

    Процесс Пуассона занимает центральное место в исследованиях СМО. Это связано, во-первых, с его упрощающими аналитическими и вероятностными свойствами; во-вторых, он описывает многие реальные процессы, являющиеся следствием совокупного эффекта большого числа индивидуальных событий.

    В процессе Пуассона вероятность изменения за время (t, t~\~h) не зависит от числа изменений за время (0, t). Простейшее обобщение состоит в отказе от этого предположения. Предположим теперь, что если за время (0, t) осуществилось п изменений, то вероятность нового изменения за время (t, t h) равна \nh плюс слагаемое более высокого порядка малости по сравнению с /г; вместо одной постоян­ной X, характеризующей процесс, мы имеем последовательность постоянных Х0, Xj, Х2

    Удобно ввести более гибкую терминологию. Вместо того чтобы говорить, что п изменений произошли за время (0, t), будем гово­рить, что система находится в состоянии Еп. Новое изменение вызывает тогда переход Еп->Еп+1. В процессе чистого размно­жения переход из Еп возможен только в Еп+1. Такой процесс характеризуют следующие постулаты.

    Постулаты. Если в момент t система находится в состоя­нии Еп(п~ 0, 1, 2,...), то вероятность того, что за время (t, t -)- h) осуществится переход в Еп + 1, равна Хп/г-|~ о (А). Вероятность иных изменений имеет более высокий порядок малости, чем h.

    ") Так как мы считаем h положительной величиной, то, строго говоря, Рп (t) в (2.4) следует рассматривать как правую производную. Но в действи­тельности это обычная двусторонняя производная. В самом деле, член о (К) в формуле (2.2) не зависит от t и потому не изменится, если t заменить на t - h. Тогда свойство (2.2) выражает непрерывность, а (2.3) дифферен- цируемос.ь в обычном смысле. Это замечание применимо и в дальнейшем и не будет повторяться.

    Отличительной чертой этого предположения является то, что время, которое система проводит в любом индивидуальном состоя­нии, не играет роли: как бы долго система ни оставалась в одном состоянии, внезапный переход в другое состояние остается одинаково возможным.

    Пусть снова P„(t) - вероятность того, что в момент t система находится в состоянии Еп. Функции Рп (t) удовлетворяют системе дифференциальных уравнений, которые могут быть выведены с помощью рассуждений предыдущего параграфа, с тем только изме­нением, что (2.2) заменяется на

    Рп (t-\-h) = Рп (0(1- V0 + Рп-1 (0\-ih + 0 (А)- (3.1)

    Таким образом, мы получаем основную систему дифференциаль­ных уравнений:

    p"n{t) = -lnPn{t) + ln_xPn_x{t) («> 1),

    P"0(t) = -l0P0(t).

    Мы можем вычислить P0(t) и затем последовательно все Pn(t). Если состояние системы представляет собой число изменений за время (0, (), то начальным состоянием является £0, так что PQ (0) = 1 и, следовательно, Р0 (t) - е~к«". Однако не обязательно, чтобы система исходила из состояния £0 (см. пример 3, б). Если в момент 0 система находится в состоянии £;, то

    Р. (0) = 1. Рп (0) = 0 для п Ф I. (3.3)

    Эти начальные условия единственным образом определяют решения }