Войти
Портал государственных закупок
  • Расчет по страховым взносам: сложности заполнения
  • Как сварить сгущенное молоко в домашних условиях Сгущенное молоко в домашних
  • Типы химических реакций в органической химии
  • Третий этап сестринского процесса – планирование ухода Создание условий для соблюдения режима
  • Боевые действия на южном сахалине Вечный огонь памяти
  • Коктейль "пина-колада" в ананасе
  • Синхронный режим работы. Синхронные режимы параллельной работы синхронных машин Синхронный режим

    Синхронный режим работы. Синхронные режимы параллельной работы синхронных машин Синхронный режим

    Режим работы синхронной машины параллельно с сетью при синхронной частоте вращения называется синхронным.

    Рассмотрим включенную на параллельную работу неявнополюсную машину, пренебрегая активным сопротивлением фаз обмотки якоря ().

    Ток обмотки якоря будет равен

    Изменение реактивной мощности. Режим синхронного компенсатора.

    В случае, если выполнены все условия включения генератора на параллельную работу, ток якоря равен нулю, машина работает на холостом ходу. Если ток возбуждения генератора после синхронизации увеличен, то, и возникает ток, отстающей отна 90 эл. град. (рис.3.23,а). Машина будет отдавать в сеть индуктивный ток и реактивную мощность. Если ток возбуждения генератора уменьшить, то, возникает опережающий токотносительнои(рис.3.23,б). Машина будет отдавать в сеть емкостной ток и потреблять из сети реактивную мощность.

    Синхронная машина не несущая активную нагрузку и загруженная реактивным током называется синхронным компенсатором.

    Изменение активной мощности. Режим генератора и двигателя.

    Чтобы включенная на параллельную работу машина вырабатывала активную мощность, работала в режиме генератора, необходимо увеличить механический вращающий момент на валу (рис.3.23,в). При этом возникает ток, отстающий отна. Значение активной мощности генератора равно

    Если, наоборот, притормозить ротор машины, создав на его валу механическую нагрузку, то ЭДС будет отставать отна угол, токот- на угол(рис.3.23,г). При этом активная мощность будет равна, машина будет работать в режиме двигателя, потребляя активную мощность из сети.

    Дмитрий Иванов, 10 Декабря 2013

    В этой статье мы познакомимся с синхронным режимом работы модуля WoodmanUSB. Имено в нем можно получить максимальные скорости пеередачи данных. В чем принципиальное отличие этого режима от асинхронного, который мы рассматривали ранее? В синхронном режиме помимо линии чтения/записи также должна применяться отдельная линия тактирования (CLK ), причем управляющие сигналы для чтения и записи должны быть довольно точно привязаны по времени к сигналу тактирования. Благодаря такой синхронизации WoodmanUSB позволяет получать скорости передачи данных до 220 МБит/с.

    Начнем с основ. Существует несколько вариантов синхронного режима. В первую очередь необходимо выделить режим с внутренним и внешним тактированием. При внешнем тактировании тактовый сигнал подается на линию CLK модуля (работает на вход) от внешнего устройства. При внутреннем тактировании модуль сам генерирует тактовый сигнал и выдает его на линию CLK (работает на выход). Внешнее устройство тактируется по этому сигналу. Модуль может генерировать две частоты тактового сигнала: 30 и 48 МГц.

    Теперь рассмотрим, что необходимо сделать на программном уровне, чтобы работать с портом PORTB модуля в синхронном режиме. Сдесь все очень просто. Необходимо только передать нужную констатну в функцию WUSB_SetupPortB() - и можно как раньше пользоваться функциями чтения/записи без каких-либо изменений. В библиотеке WUSBdrv.dll определены три константы для синхронного режима: SYNC_MODE_EXTERNAL_CLK - тактовый сигнал будет внешним относительно модуля (подается внешним устройством на линию CLK модуля), SYNC_MODE_INTERNAL_CLK_30MHZ - внутренний сигнал тактирования с частотой 30 МГц (выдается наружу через линию CLK) и SYNC_MODE_INTERNAL_CLK_48MHZ - тоже самое, только частота 48 МГц.

    //SYNC_MODE_EXTERNAL_CLK 0x0C //SYNC_MODE_INTERNAL_CLK_30MHZ 0x14 //SYNC_MODE_INTERNAL_CLK_48MHZ 0x1C WUSB_SetupPortB(SYNC_MODE_INTERNAL_CLK_30MHZ);

    Еще раз повоторю, что работа с функциями чтения/записи в синхронном режиме ни как не отличается от рассмотренной ранее в асинхронном режиме.


    А теперь давайте рассмотрим временные диаграммы, илюстрирующее "взаимоотношения" между сигналом тактирования и управляющими сигналами чтения/записи.

    1. Синхронный режим. Чтение данных из модуля внешним устройством

    Таблица 1.1

    Таблица 1.2

    2. Синхронный режим. Запись данных в модуль внешним устройством

    Таблица 2.1 Параметры синхронного режима при внутреннем тактировании

    Параметр Описание Min Max

    Период тактового сигнала

    Таблица 2.2 Параметры синхронного режима при внешнем тактировании

    Параметр Описание Min Max

    Период тактового сигнала

    Время предустановки сигнала чтения

    Время удержания сигнала чтения

    Время предустановки данных на линиях порта PORTB

    Время удержания данных на линиях порта PORTB

    Теперь давайте проведем небольшой тест, иллюстрирующий потенциальные скорости передачи в синхронном режиме. Идеологию оставим как в прошлой статье - сами данные реально не обрабатываем, генерируем только сигналы чтения/записи и в данном режиме еще и тактового сигнала. Также давайте определимся в каком из подвидов синхронного режима будем работать. Предлагаю использовать с вутренним тактированием на 48 МГц, поскольку с внешним все сложнее, необходимо соблюдать довольно жесткие требования по временным характеристикам. Схема тестового устройства показана ниже. Как видно из рисунка сигналы управления чтения/записи совпадают с тактовым сигналом, который в режиме внутреннего тактирования выводится "наружу" модуля по линии CLK.

    Программу используем из прошлой статьи. Единственное изменение которое необходимо сделать так это вызвать функцию WUSB_SetupPortB() с параметром SYNC_MODE_INTERNAL_CLK_48MHZ. Скриншоты результатов тестов показаны ниже.


    Я думаю Вы согласитесь, что результаты весьма не плохие. Итого можно сказать что синхронный режим заметно сложнее по аппаратной реализации чем асинхронный но его использование позволяет получать максимальные скорости передачи данных. Сложность аппаратной реализации обусловлена тем, что в реальности для передачи данных необходимо анализировать состояния буферов во избежание потерь данных при их переполнении это раз, затем необходимо сделать поправку на то что внешнее устройство должно быть достатчно быстродейситвующим, чтобы обеспечивать заданные временные характеристики генерации сигналов управления и их синхронизации с тактовым сигналом.


    Асинхронный режим.

    В этом режиме данные модем передает по одному байту. В начале каждого байта передаются биты сигхронизации, а в конце байта – стоповые биты. Между передачей двух байт выдерживается определенная пауза. Этот режим хорошо работает на не очень качественных телефонных линиях т.к. если происходит искажение данных, то небольшого их количества (за 1 сек передается небольшое количество данных) и повторять приходится только небольшое количество байт. Однако и скорость передачи не большая.

    Этот режим разработан только для качественных линий. Модем передает не по одному байту а обоймами (как при временном мультиплексировании) те несколько байт передаются полряд без пауз и промежутояных старт и стоповых бит. Старт и стоповые биты передаются только вначале и в конце обоймы, а паузы – между обоймами. За счет такой пакетной передачи байтов значительно ускоряется передача, но при плохойлинии и многочисленных искажениях приходится повторно передавать большое количество данных, что не ускоряет, а наоборот, - замедляет передачу или вообще делает ее не возможной.

    Модемы, работающие только в асинхронном режиме , обычно поддерживают низкую скорость передачи данных - до 1200 бит/с..

    Модемы, работающие только в синхронном режиме , могут подключаться только к 4-проводному окончанию. Синхронные модемы используют для выделения сигнала высокоточные схемы синхронизации и поэтому обычно значительно дороже асинхронных модемов. Кроме того, синхронный режим работы предъявляет высокие требования к качеству линии. существуют различные стандарты ддля них:

    · V.26 - скорость передачи 2400 бит/с;

    · V.27 - скорость передачи 4800 бит/с;

    · V.29 - скорость передачи 9600 бит/с;

    · V.32 ter - скорость передачи 19 200 бит/с.

    Для выделенного широкополосного канала 60-108 кГц существуют три стандарта:

    · V.35 - скорость передачи 48 Кбит/с;

    · V.36 - скорость передачи 48-72 Кбит/с;

    · V.37-скорость передачи 96-168 Кбит/с.

    Модемы, работающие в асинхронном и синхронном режимах , являются наиболее универсальными и часто используемыми устройствами. Чаще всего они могут работать как по выделенным, так и по коммутируемым каналам, обеспечивая дуплексный режим работы. На выделенных каналах они поддерживают в основном 2-проводное окончание и гораздо реже - 4-проводное.

    Для асинхронно-синхронных модемов разработан ряд стандартов серии V:

    · V.22 - скорость передачи до 1200 бит/с;

    · V.22 bis - скорость передачи до 2400 бит/с;

    · V.26 ter - скорость передачи до 2400 бит/с;

    · V.32 - скорость передачи до 9600 бит/с;

    · V.32 bis - скорость передачи 14 400 бит/с;

    · V.34 - скорость передачи до 28,8 Кбит/с; - выбор скорости и др.параметров в зависимости от качества линии

    · V.34+ - скорость передачи до 33,6 Кбит/с. – усовершенствованый метод кодирования, лучше работают на зашумленных линиях

    На высокой скорости модемы V.32-V.34+ фактически всегда используют в канале связи синхронный режим.

    В нормальном режиме работы на вал генератора действует два момента (считаем, что можно пренебречь моментом сопротивления, обусловленным трением в подшипниках и сопротивлением охлаждающей среды): момент турбины Мт , вращающий ротор генератора и стремящийся ускорить его вращение, и синхронный электромагнитный момент Мэм , противодействующий вращению ротора. В случае нарушения равновесия между вращающим моментом турбины и электромагнитным (тормозным) моментом генератора в зависимости от тяжести возмущения могут возникать: синхронные качания или асинхронный режим генератора.

    Асинхронный режим (asynchronous regime ) – переходный режим в энергосистеме, характеризующийся несинхронным вращением части генераторов энергосистемы.

    Асинхронные режимы могут возникать в результате:

    Нарушения статической устойчивости из-за увеличения передаваемой мощности по линиям электропередачи сверхдопустимого значения;

    Нарушения динамической устойчивости из-за аварийных возмущений (коротких замыканий, отключение генерирующего оборудования или электроустановок потребителя);

    Несинхронного включения линий электропередачи и генераторов;

    Потери возбуждения генератора.

    Следует отметить, что асинхронные режимы работы невозбужденной и возбужденной синхронной машины существенным образом отличаются друг от друга.

    1. Асинхронный режим возбужденной синхронной машины

    В качестве примера, рассмотрим переход генератора в асинхронный режим работы из-за нарушения динамической устойчивости (см. рис.1) при возникновении короткого замыкания с отключением линии электропередачи.

    Характерная особенность указанной зависимости - наличие четко выраженного максимума и минимума. Отличие асинхронного режима от синхронных качаний с точки зрения изменения тока заключается только в величине максимального значения тока в цикле качаний и в длительности этих качаний. Поскольку угол при синхронных качаниях теоретически может достигать своего критического значения, нельзя отличить асинхронный режим от синхронных качаний только по значению тока. Поэтому устройства АЛАР, основанные на выявлении асинхронного режима по колебаниям тока, настраиваются на работу на втором, третьем и т.д. цикле асинхронного режима. Другими словами, селективно асинхронный режим можно выявить лишь по длительным колебаниям тока с амплитудой не менее заданной и периодом не более расчетного.

    Зависимость изменения напряжения и взаимного угла между двумя векторами напряжения при асинхронном режиме

    Выражение для определения напряжения в промежуточных точках определяется в соответствии со вторым законом Кирхгофа по следующей формуле:

    Относительная удаленность контролируемой точки с напряжением от точки с напряжением .

    В асинхронном режиме вектор ЭДС синхронной машины, выпавшей из синхронизма, начинает вращаться относительно вектора ЭДС машин, работающих синхронно. Следует отметить, что в общем случае вращение вектора может происходить как по часовой стрелке, так и против часовой стрелки:

    против часовой стрелки ускоряются

    Если вектор энергосистемы №2 вращается по часовой стрелке , то это свидетельствует о том, что генераторы энергосистемы №2 тормозятся относительно генераторов энергосистемы №1.

    В качестве примера рассмотрим вращение вектора системы №2 в представленной расчетной схеме «по часовой стрелке».

    Анализ полученных выражений показывает, что в момент расхождения напряжения системы №1 и системы №2 на угол 180 градусов (асинхронный проворот) активная мощность меняет свой знак, а значение реактивной мощности достигает своего максимального значения. Данная особенность изменения мощности в момент асинхронного проворота используется различными производителями в устройствах АЛАР независимо от элементной базы (электромеханические или микропроцессорные устройства).

    В общем случае годограф вектора полной мощности (S = P + j Q) в месте измерения (установки реле мощности) представляет собой эллипс (зависимость P от Q) при изменении угла. Особенности изменения годографа мощности в цикле асин-хронного хода позволяют выявить момент наступления асинхронного режима, если есть возможность зафиксировать переход указанного годографа из диапазона углов ~0<δ<180° в диапазон ~180 0 <δ<360 0 при выполнении дополнительного условия, характеризующего зону δ≈180°.

    Зависимость изменения сопротивления при асинхронном режиме

    Сопротивление на зажимах реле сопротивления определяется как частное от деления напряжения в контролируемой точке на ток

    С учетом соотношения между модулями напряжения по концам линии электропередачи полученное выражение может быть преобразовано в следующем виде:

    Анализ полученного выражения показывает, что годографом сопротивления является окружность (эллипс), смещенная относительно начала координат. В зависимости от соотношения модулей напряжений по концам линии электропередачи характеристика изменения сопротивления имеет различный вид.

    Синхронный режим работы действительно является синхронным, так как синхронизирующий сигнал передается вместе с данными, чтобы обеспечить непрерывный режим синхронизации между передающим и принимающим устройствами. Формат передаваемых цифровых данных представлен на рис. 9.5.

    Рис. 9.5. Формат сообщения, используемый при синхронном методе передачи

    Каждый из блоков на рис. 9.5 представляет 8-разрядный символ, так как в качестве примера был выбран семибитовый символ, представленный в Американской стандартной кодировке ASCII. В данном формате отсутствуют стартовый и стоповый биты, которые ассоциируются с синхронизацией каждого передаваемого символа. Все биты, образующие группу символов, посылаются один за другим в виде, получившем название «блок данных». В результате момент синхронизации передающего и принимающего устройств должен быть согласован более точно по сравнению с методом асинхронной передачи.

    При синхронном режиме работы передается специальный кодовый сигнал, необходимый для того, чтобы поддерживать синхронизм между синхронизирующим генератором принимающего устройства и передаваемыми данными. Данные передаются большими блоками, расположенными между синхронизирующей информацией.

    Для того чтобы обеспечить точную синхронизацию, в каждый блок данных включаются специальные кодовые шаблоны. Электронные схемы в принимающем устройстве постоянно проверяют поступающие данные на присутствие подобного шаблона. После его обнаружения принимающее устройство воспринимает последующий символ в качестве передаваемых данных и считает, что блок этих данных будет продолжаться до тех пор, пока не будет обнаружен код конца сообщения. (Так как синхронизация в приемном устройстве должна производиться от поступающего потока данных, синхронные модемы в общем случае являются более дорогими устройствами по сравнению с асинхронными.)

    После кодов синхронизации блока следуют сами данные до момента, пока не поступит код конца сообщения.

    Как правило, в начале каждого блока сообщения применяется сразу несколько кодов синхронизации на тот случай, если первый код окажется утраченным из-за проблем, возникающих в линии передачи. Величина каждого передаваемого блока определяется объемом буферной памяти, в которой хранится блок данных перед его передачей. Наличие буферной памяти необязательно при асинхронном методе передачи, так как каждый символ предается немедленно после того, как он был закодирован цифровым оборудованием. Однако при синхронной передаче несколько символов накапливаются в памяти, а затем передаются с постоянной и не изменяющейся скоростью, достигающей нескольких тысяч битов в секунду. По этой же причине в принимающем устройстве оказывается необходимой буферная память.



    Для хранения блоков данных перед их передачей, а также при их приеме как в передающем, так и принимающем устройствах необходимы устройства буферной памяти.

    Формат, используемый при синхронном методе передачи данных и приведенный на рис. 9.5, не является единственно возможным и демонстрирует лишь подход к проблеме. В ряде способов синхронизации синхронизирующие коды вставляются в определенные временные интервалы. При некоторых способах используются определенные форматы передаваемых фреймов. С наступлением эпохи интегральных микросхем, обеспечивающих обработку больших потоков информации с огромными скоростями (достаточно часто в реальном масштабе времени - В.Н.), и успехами в развитии полупроводниковой технологии, позволяющей производить интегральные микросхемы с очень большой плотностью размещения элементов на поверхности микрокристалла (высокой степенью интеграции), подходы к методам синхронизации изменились. Интегральные микросхемы последнего поколения в состоянии выявлять смену в принимаемых цифровых данных и постоянно поддерживать рабочую частоту принимающего синхронизирующего генератора с высокой точностью.

    Изохронный режим работы. Изохронный режим передачи представляет собой нечто среднее между синхронным и асинхронным режимами работы. На рис. 9.6 приводится формат, используемый для передачи символов.

    Рис. 9.6. Символьный формат, используемый в методе изохронной передачи

    Каждый символ ограничен стартовым и стоповым битами, как это осуществляется и в режиме асинхронной передачи, однако интервалы следования между символами строго определены по времени. Временной интервал может иметь любую длительность, но при этом не должен отличаться от значения, кратного периоду следования одного символа.

    При изохронном режиме работы каждый из символов ограничивается стартовым и стоповым битами, а интервалы между символами ограничены значениями, кратными значениям одного символьного промежутка.