Войти
Портал государственных закупок
  • Сонник поцелуй человека. Тебя целуют во сне. Значение снов Поцелуй
  • Бухучет инфо Основные изменения в корректировочном бланке
  • Фонетический разбор слова «звуко-буквенный
  • Парад планет - одно из самых величественных явлений природы
  • Артериальное давление – норма и патология
  • Расчет по страховым взносам: сложности заполнения
  • Медицинская биология. Методы генетики Цитогенетический метод исследования когда он применяется

    Медицинская биология. Методы генетики Цитогенетический метод исследования когда он применяется

    Цитогенетический метод основан на микроскопическом изучении хромосом в клетках человека. Его стали широко применять в исследованиях генетики человека с 1956 г., когда шведские ученые Дж. Тийо и А. Леван, предложив новую методику изучения хромосом, установили, что в кариотипе человека 46, а не 48 хромосом, как считали ранее.

    Современный этап в применении цитогенетического метода связан с разработанным в 1969 г. Т. Касперсоном методом дифференциального окрашивания хромосом, который расширил -возможности цитогенетического анализа, позволив точно идентифицировать хромосомы по характеру распределения в них окрашиваемых сегментов (см. разд. 3.5.2.3).

    Применение цитогенетического метода позволяет не только изучать нормальную морфологию хромосом и кариотипа в целом, определять генетический пол организма, но, главное, диагностировать различные хромосомные болезни, связанные с изменением числа хромосом или с нарушением их структуры. Кроме того, этот метод позволяет изучать процессы мутагенеза на уровне хромосом и кариотипа. Применение его в медико-генетическом консультировании для целей пренатальной диагностики хромосомных болезней дает возможность путем своевременного прерывания беременности предупредить появление потомства с грубыми нарушениями развития.

    Материалом для цитогенетических исследований служат клетки человека, получаемые из разных тканей,-лимфоциты периферической крови, клетки костного мозга, фибробласты, клетки опухолей и эмбриональных тканей и др. Непременным требованием для изучения хромосом является наличие делящихся клеток. Непосредственное получение таких клеток из организма затруднено, поэтому чаще используют легкодоступный материал, каковым являются лимфоциты периферической крови.

    В норме эти клетки не делятся, однако специальная обработка их культуры фитогемагглютинином возвращает их в митотический цикл. Накопление делящихся клеток в стадии метафазы, когда хромосомы максимально спирализованы и хорошо видны в микроскоп, достигается обработкой культуры колхицином или колцемидом, разрушающим веретено деления и препятствующим расхождению хроматид.

    Микроскопирование мазков, приготовленных из культуры таких клеток, позволяет визуально наблюдать хромосомы. Фотографирование метафазных пластинок и последующая обработка фотографий с составлением кариограмм, в которых хромосомы выстроены парами и распределены по группам, позволяют установить общее число хромосом и обнаружить изменения их количества и структуры в отдельных парах (рис. 6.33). Кариотипы человека при некоторых хромосомных болезнях представлены на рис. 4.3-4.12.

    Рис. 6.33. Нормальные кариотипы человка. А - женщины; Б - мужчины Вверху представлены хромосомные комплексы, внизу - кариограммы

    В качестве экспресс-метода, выявляющего изменение числа половых хромосом, используют метод определения полового хроматина в неделящихся клетках слизистой оболочки щеки. Половой хроматин, или тельце Барра, образуется в клетках женского организма одной из двух Х-хромосом. Оно выглядит как интенсивно окрашенная глыбка, расположенная у ядерной оболочки (см. рис. 3.77). При увеличении количества Х-хромосом в кариотипе организма в его клетках образуются тельца Барра в количестве на единицу меньше числа Х-хромосом. При уменьшении числа Х-хромосом (моносомия X) тельце Барра отсутствует.

    В мужском кариотипе Y-хромосома может быть обнаружена по более интенсивной по сравнению с другими хромосомами люминесценции при обработке их акрихинипритом и изучении в ультрафиолетовом свете.

    Метод микроскопического изучения наследственных структур клетки - хромосом. Он включает кариотипирование и определение полового хроматина.

    а) Кариотипирование проводится для получения метафазных хромосом.

    Кариотип - это диплоидный набор хромосом в соматических клетках на стадии метафазы, характерный для данного вида.

    Кариотип, представленный в виде диаграммы, называется идиограмма, кариограмма или хромосомный комплекс.

    Для кариотипирования наиболее удобным источником клеток являются лимфоциты (клетки периферической крови). Вначале получают достаточное количество делящихся клеток (стимуляция ФГА), а затем метафазные пластинки (для остановки деления на стадии метафазы используют колхицин) с раздельно лежащими хромосомами (гипотонический раствор). Препараты окрашивают и фотографируют, хромосомы вырезают и раскладывают.

    Для систематизации хромосом используют две стандартные классификации: Денверскую и Парижскую. В основу Денверской классификации положены два принципа: длина хромосом и их форма (метацентрические, субметацентрические, акроцентрические), при этом используется метод сплошной окраски хромосом. По этой классификации все хромосомы разделены на семь групп, каждая пара хромосом имеет свой номер. Недостатком классификации является трудность в идентификации хромосом внутри группы.

    Парижская классификация основывается на дифференциальном окрашивании метафазных хромосом. Каждая хромосома имеет свой индивидуальный рисунок, четкую дифференциацию по длине на светлые и темные полосы - диски (сегменты). Разработана система обозначения линейной дифференциации хромосом (номер хромосомы, плечо, район, сегмент).

    б) Определение Х-полового хроматина.

    Половой хроматин (тельце Барра) - компактная темная глыбка, которая имеется в интерфазном ядре соматических клеток нормальных женщин. Половой хроматин представляет спирализованную Х-хромосому. Инактивация одной из Х-хромосом является механизмом, выравнивающим баланс генов в мужском и женском организме. Согласно гипотезе Марии Лайон, инактивация Х-хромосомы происходит на ранних стадиях эмбриогенеза (14 день), она носит случайный характер, причем инактивируются только длинные плечи Х-хромосомы. По числу глыбок полового хроматина можно судить о числе Х-хромосом (формула n+1, где n - число телец Барра). При любом числе Х-хромосом в активном состоянии будет только одна Х-хромосома. Цитогенетические методы используются для диагностики хромосомных болезней (изменение числа и структуры хромосом), определения пола, изучения хромосомного полиморфизма членов популяций.

    Цитогенетический метод применяют в целях:

      изучения кариотипа человека

      диагностики хромосомных заболеваний

      изучения мутагенного действия различных веществ при генных и хромосомных мутациях

      составлении генетических карт хромосом

    Этапы:

    1. Культивирование клеток крови на питательных средах

    2. Стимуляция митотических делений

    3. Добавление колхицина для разрушения нитей веретена деления, остановка деления на стадии метафазы

    4. Обработка клеток гипотоническим раствором для свободного расположения хромосом

    5. Окрашивание

    6. Микроскопирование и фотографирование

    7. Построение идиограммы

    Новейшее медицинское оборудование и современные методики позволяют клиентам частных центров узнать о возможных патологиях в развитии человека еще до его рождения. Цитогенетический метод исследования – анализ, с помощью которого можно установить имеющиеся изменения в хромосомном аппарате. В первую очередь выясняются аномалии в самом наборе хромосом, а также наличие разнообразных структурных перестроек. Такое цитогенетическое исследование чаще всего применяется для своевременной диагностики врожденных и опасных приобретенных заболеваний.

    Так, например, в онкологии и, смежной с ней, онкогематологии очень важно вовремя установить тип хромосомных транслокаций, характерный для определенных опухолевых клеток. Установление их наличия позволяет быстро и максимально правильно подобрать тактику лечения. Подобная процедура сложная и многоступенчатая, а результат полностью зависит от опытности персонала и качества оборудования, поэтому не нужно рисковать своей жизнью и пытаться сэкономить на данном анализе. Для каждой отдельной задачи может потребоваться отдельное исследование, поэтому выполнение анализа верно и «с первого раза» очень важно для пациента.

    Если необходимо проанализировать не всю хромосомную структуру, а только отдельные последовательности ДНК или РНК, используется молекулярно цитогенетическое исследование . Оно позволяет изучить те или иные гены, а, благодаря своей высокой точности – часто применяется для обнаружения минимальных проявлений остаточных болезней. Например, этот способ рекомендуют для раннего обнаружения опухолевых рецидивов: мелкие лейкемические клетки просто нельзя выявить другими способами на таких ранних сроках. Обычно цитогенетическое исследование крови проводится на основе способа полимеразной цепной реакции. Такая технология позволяет получить большое количество идентичных копий исследуемого участка ДНК. Наличие множества копий открывает дополнительные возможности исследовать последовательность ДНК, как новейшими, так и традиционными способами.

    Цитогенетическое исследование кариотип

    К стандартным процедурам цитогенетического анализа крови относится кариотипирование. С его помощью выявляют нарушения в количестве и структуре хромосом. Очень важно отдать предпочтение клинике, с качественным оборудованием и расходными материалами. Для анализа кариотип, забор клеток крови держат в питательной среде на протяжении 3 суток. Затем происходит фиксация полученного материала и изучение под микроскопом. На данных этапах нужно тщательно проследить за качеством специальных окрашивающих препаратов и уровнем подготовки персонала.

    Существует также цитогенетическое исследование плода , его назначают при различных подозрениях на генетические отклонения или при неправильном раннем внутриматочном развитии. Частные медицинские центры могут обеспечить надлежащий уровень проведения подобных исследований и выявить различные хромосомные патологии, пороки развития, бесплодие или невозможность выносить ребенка на ранних сроках беременности или до нее.

    Цитогенетическое исследование костного мозга назначают пациентам с различными видами злокачественных заболеваний в органах системы кроветворения. Во время этого анализа оценивается не менее 20 клеток. Нужно учитывать, что забор материала для исследования должен производиться только в специальном медицинском учреждении, имеющем разрешение на проведение подобных опасных вмешательств.

    На ранних сроках беременности может потребоваться цитогенетическое исследование хориона . Его проводят на 10-14 неделе беременности с целью исключения хромосомных болезней плода, таких как синдром Дауна, болезнь Хантера, b-талассемия и еще около 50 различных отклонений и заболеваний. Обратившись в частный центр, клиент может быть уверен в качестве обслуживания и достоверности полученных на современном оборудовании результатов анализов.

    Метод позволяет идентифицировать кариотип (особенность строения и число хромосом), путем записи кариограммы. Цитогенетическое исследование проводится у пробанда, его родителей, родственников или плода при подозрении на хромосомный синдром либо другое хромосомное нарушение.

    Для определения кариотипа используют как прямые, так и непрямые методы исследования. В первом случае материал, взятый из костного мозга, лимфатических узлов, эмбриональных тканей, хориона, клеток амниотической жидкости или других тканей, изучают сразу же после получения. Однако прямой метод информативен только тогда, когда в материале имеется достаточное количество метафаз митоза, так как только в этой фазе хромосомы приобретают присущие им особенности строения и возможна их точная идентификация. В настоящее время широко применяются непрямые методы исследования.

    Метод приготовления метафазных пластин. Взятую культуру (лимфоциты периферической крови и др.) помещают в питательную среду для культивирования. В норме в периферической крови не наблюдается митоза лимфоцитов, поэтому используют препараты (фитогемагглютинин), стимулирующие иммунологическую трансформацию лимфоцитов и их деление. Вторым этапом является остановка митотического деления клетки на стадии метафазы. Достигается это путем добавления в культуру тканей за 2-3 часа до окончания культивирования препаратов колхицин или колцимед. На третьем этапе, используя гипотонический раствор хлорида кальция или цитрат натрия, добиваются гипотонизации клеток, в результате чего клетка набухает, ядерная оболочка разрывается, межхромосомные связи рвутся, и хромосомы свободно плавают в цитоплазме. Далее полученная культура фиксируется смесью метанола и уксусной кислоты, центрифугируется и меняется фиксатор. Суспензия с фиксатором наносится на чистое предметное стекло, где метафазная пластинка расправляется и в ее пределах располагаются отдельно лежащие хромосомы. По мере высыхания фиксатора, клетка прочно прикрепляется к стеклу. Таким образом, независимо от культуры клеток, из которых были получены метафазные пластинки общий принцип получения препаратов следующий: накопление метафаз, гипотонизация, фиксация, раскапывание на предметное стекло.

    Окраска препарата. Окраска препаратов является следующей стадией после получения метафазных пластин и делится на простые, дифференцированные и флюоресцентные. Каждая из видов окрашивания применяется для выявления только определенных изменений кариотипа. При простой окраске (метод окраски по Гимзе), возможно лишь групповая идентификация хромосом, поэтому данный метод используется для ориентировочного определения числовых аномалий кариотипа. Простая окраска широко применяется для изучения хромосомного мутагенеза при проверке факторов окружающей среды на мутантность. Краситель Гимзы окрашивает все хромосомы равномерно по всей длине, контурируя при этом центромеру, спутники и вторичные перетяжки. Дифференциальное окрашивание обусловлено способностью к избирательному окрашиванию по длине и обеспечивается сравнительно простыми температурно-солевыми воздействиями на фиксированные хромосомы. При этом выявляется структурная дифференцировка хромосом по длине, выражающееся в виде чередования эу- и гетерохроматических районов (темные и светлые), которые специфичны для каждой хромосомы, соответствующего плеча и района. Наиболее часто используется G-окраска. При этом хромосомы предварительно обрабатываются протеазой или солевым раствором. Для изучения мутационного процесса у человека широко используется метод дифференциальной окраски сестринских хроматид, основанный на способности включатся в последовательность репликации хромосомы аналога тимидина-5-бромдезоксиуридина. Участки хромосомы, включившие этот аналог, окрашиваются плохо, поэтому используя этот метод можно идентифицировать любую хромосому или хромосомную перестройку.

    Исследование полового хроматина. Метод определения полового хроматина быстрее и проще, чем исследование набора хромосом (кариотипа), поэтому он применяется в качестве одного из скрининг-тестов при массовых обследованиях населения. В норме в клетках женского организма при определенных способах окраски вблизи ядерной мембраны образуется интенсивно окрашиваемое тельце - половой хроматин, или тельце Барра, которое образуется одной, неактивной Х-хромосомой. Другая Х-хромосома в клетках женского организма является активной. У мужчин имеется лишь одна Х-хромосома, и она всегда активна, поэтому в ядрах клеток мужского организма половой хроматин не определяется. Для исследования полового хроматина Х обычно берут соскоб со слизистой полости рта. Наиболее распространен экспресс-метод окраски по Сандерсу с использованием 2% раствора уксуснокислого ацетоорсеина с последующей иммерсионной микроскопией. Кроме того, в зрелых нейтрофилах крови выявляется еще и так называемая барабанная палочка, причем телец хроматина и барабанных палочек на единицу меньше числа Х-хромосом. В нейтрофилах у мужчин выявляются также околоядерные образования в виде «ниточек» и «волосков». Исчезновение у женщин неактивной Х-хромосомы ведет к отсутствию полового хроматина. Появление у мужчины дополнительной Х-хромосомы приводит к формированию тельца полового хроматина.

    Показания для цитогенетического обследования больного:

    • 1) множественные пороки развития (с вовлечением трех и более систем); наиболее постоянные нарушения - пороки рзвития головного мозга, опорно-двигательной системы, сердца и мочеполовой системы;
    • 2) умственная отсталость в сочетании с нарушениями физического развития, дисплазиями, гипогенитализмом;
    • 3) стойкое первичное бесплодие у мужчин и у женщин при исключении гинекологической и урологической патологии;
    • 4) привычное невынашивание беременности, особенно на ранних стадиях;
    • 5) нарушение полового развития (гипогонадизм, половые инверсии);
    • 6) небольшая масса ребенка, рожденного при доношенной беременности.

    Применение цитогенетического метода в клинической генетике обусловило развитие нового направления - клинической цитогенетики, которая позволяет:

    • - установить происхождение структурно перестроенных хромосом и их точную классификацию;
    • - выделить синдромы, обусловленные дисбалансом по участкам индивидуальных хромосом;
    • - накапливать сведения об изменениях хромосом в опухолевых клетках, у больных с наследственными заболеваниями крови и т.д.

    Омская Государственная Медицинская Академия

    Кафедра пропедевтики детских болезней и поликлинической педиатрии

    Утверждаю:

    Зав. кафедрой Лукьянов А.В.

    “_____” 20__ г.

    Медицинская генетика

    Методы медицинской генетики – цитогенетический

    ОМСК – 2001

    УТВЕРЖДАЮ

    Зав. кафедрой

    “___” 20___ г.

    МЕТОДИЧЕСКАЯ РАЗРАБОТКА к практическому занятию для студентов IV курса педиатрического факультета

    Тема занятия : Методы медицинской генетики – Цитогенетический

    Актуальность темы : Значительная часть множественных врожденных пороков развития, нарушений полового и психомоторного развития у детей связана с изменениями числа или структуры хромосом. Успехи в выделении самостоятельных хромосомных синдромов, в их диагностике в каждом конкретном случае, а также профилактике и лечении невозможны без изучения структуры и функций хромосом, основных методов их исследования.

    Цель занятия : Изучить строение и классификацию хромосом человека, основные методы исследования – кариотипирование и анализ полового хроматина. Определить основные синдромы, причиной которых являются хромосомные аномалии и показания для цитогенетического метода исследования.

    Студент должен знать:

      Строение, функцию и классификацию хромосом человека (биология).

      Числовые и структурные аномалии хромосом.

      Полиморфизм хромосомных синдромов (патофизиология).

      Методы цитогенетического исследования (биология).

    Студент должен уметь:

      Выявить фенотипические признаки хромосомных синдромов у детей.

      Определить показания для исследования кариотипа и полового хроматина.

      Интерпретировать заключения врача–цитогенетика о наличии хромосомной патологии у пробанда.

    Оснащение занятия :

      таблицы, слайды, фотографии, ситуационные задачи, препараты метафазных пластинок хромосом человека, препараты буккального эпителия, наборы реактивов, световой микроскоп.

    Продолжительность занятия : 140 минут

    Место проведения занятия : учебная комната, цитогенетическая лаборатория

    Методика проведения занятия :

    1. Проверка присутствующих 10 мин

    2. Формулировка темы 10 мин

    3. Решение ситуационных задач 30 мин

    4. Обсуждение материала 65 мин

    5. Ответы на вопросы 10 мин

    6. Заключение преподавателя и задание на дом 10 мин

    Реферат

    Цитогенетика человека занимает одно из важнейших мест в медицинской генетике. Объектом цитогенетических исследований служа хромосомы (греч. chroma – ‘цвет’ и soma – ‘тело’; В. Вальдеер, 1888 г) – структурные элементы ядра клетки, заключающие в себе основную часть наследственной информации. В зависимости от функциональной активности и стадии клеточного цикла в составе хромосом ДНК может быть уложена с различной плотностью. События, развертывающиеся в клетке в процессе митотического деления протекают в закономерной последовательности и составляют пять сменяющихся стадий: интерфаза, профаза, метафаза, анафаза и телофаза. Митотические хромосомы образуются в клетке во время митоза, ДНК в них уложена чрезвычайно плотно. Благодаря этому обеспечивается равномерное распределение генетического материала между дочерними клетками при митозе. Интерфазные хромосомы (хроматин) активно участвуют в процессах транскрипции и репликации.

    Форма метафазных хромосом определяется положение первичной перетяжки – центромеры, которая делит ее на две равных или неравных по длине плеча – теломеры. Короткое плеча хромосомы обозначают литерой "p ", длинное – "q ". Выделяют метацентрические, субметацентрические и акроцентрические хромосомы.

    Соматические клетки человека имеют постоянный двойной диплоидный (2n ) набор хромосом или кариотип, который составлен из двух одинарных гаплоидных наборов (n ), полученных от родителей. В соматических клетках человека диплоидный набор составляют 46 хромосом (22 пары аутосом и пара половых хромосом). Нормальный набор половых хромосом у женщин представлен ХХ и у мужчин – XY хромосомами. В половых клетках содержится гаплоидный набор хромосом.

    Классификация равномерно окрашенных хромосом выработана на международных совещаниях в Денвере (1960), Лондоне (1963) и Чикаго (1966). Хромосомы располагаются в порядке уменьшения их длины. Все пары аутосом нумеруют арабскими цифрами от 1 до 22. Половые хромосомы обозначают латинскими буквами X и Y и при кариотипировании помещают в конце раскладки. Расположенные в указанном порядке, все аутосомы распределяются на семь групп, которые различаются между собой по длине и форме составляющих их членов и обозначаются буквами английского алфавита от A до G. В группе A (1–3) оказываются три пары самых крупных хромосом: 1, 3 – метацентрические хромосомы и 2 – субметацентрическая. Группа B (4–5) включает 2 пары длинных субметацентрических хромосом. Группа С (6–12) объединяет семь пар субметацентрических аутосом и не отличающуюся от них Х‑хромосому. В группу D (13–15) входят три пары акроцентрических хромосом, а в группу Е (16–18) – три пары субметацентрических хромосом. Группа F (19–20) содержит две пары маленьких метацентрических хромосом, группа G (21–22) – две пары самых мелких акроцентрических хромосом. Y‑хромосома выделяется как самостоятельная.

    С появлением методов дифференциальной окраски (G, Q, C) появилась возможность идентифицировать хромосомы по характерному для каждой пары чередованию светлых (эухроматин) и темных (гетерохроматин) полос, расположенных симметрично в сестринских хроматидах (Париж, 1971).

    Каждая хромосома дифференцирована на 2 типа различных районов, так называемые эу- и гетерохроматические районы. Эухроматические, активные районы – содержат весь основной комплекс генов ядра, т.е. участков хромосомной нити, дифференциально контролирующих развитие признаков организма. Гетерохроматические районы образуют дистальные и проксимальные участки хромосомной нити, а также входят в состав внутренних ее частей. Роль гетерохроматических районов хромосом, эволюционно закрепленных в их структуре, в настоящее время активно изучается.

    Среди геномных мутаций выделяют:

      полиплоидии – увеличение количества хромосом, кратное гаплоидному числу n (3n, 4n и т.д. );

      анеуплоидии – отклонение количества хромосом от эуплоидных чисел. Среди анеуплоидий выделяют:

      моносомии (2n–1 ) – отсутствие одной хромосомы для соответствующей пары,

      трисомии (2n+1 ) – наличие 3‑х гомологичных хромосом вместо обычной пары;

      мозаицизм – присутствие более одной популяции клеток с разным числом хромосом у одного и того же человека.

    Структурные перестройки могут быть сбалансированными , когда порядок расположения сегментов в хромосомах нарушен, но в целом, количества генетического материала не меняется:

      инверсии –поворот участка хромосомы на 180°,

      транслокации – обмен участками хромосом; могут быть реципрокными при взаимном обмене участками между двумя негомологичными хромосомами и робертсоновскими – транслокации между двумя акроцентрическими хромосомами.

    Несбалансированные перестройки возникают при утрате или избытке хромосомного материала:

      делеции – утрата части хромосомы;

      дупликации – удвоение участка хромосомы;

      изохромосомы – хромосомы, состоящие из двух коротких плечей.

    Увеличение или потерю хромосомного материала обозначают соответственно знаком "+" или "–", помещаемым перед номером хромосомы (47 ,XY +21 ).

    Методы цитогенетического анализа делятся на прямые и непрямые. Непрямые методы включают в качестве обязательного этапа культивирование клеток в искусственных питательных средах. Материалом являются лимфоциты периферической крови и пуповинной крови плода, фибробласты кожи и амниотической жидкости, клетки спонтанно абортируемых эмбрионов и зародышевых оболочек. Прямые методы применяются в тех случаях, когда необходим быстрый результат и имеется возможность получить препараты хромосом клеток, делящихся в организме. Источником таких клеток является костный мозг и клетки зародышевых оболочек. Основным объектом цитогенетического исследования прямыми и непрямыми методами являются стадия метафазы митоза и различные стадии мейоза. Метафаза митоза служит основным объектом для анализа хромосомного набора, т.к. именно на этой стадии возможна точная идентификация хромосом и выявление их аномалий.

    Во время митоза каждая хромосома состоит из двух одинаково длинных тонких тяжей, называемых сестринскими хроматидами, сжимающихся в плотные структуры, в связи с чем создается впечатление коротких плечей, поддерживающихся вместе с помощью центромеры. В метафазе, когда их длина самая наибольшая, хромосомы разбиваются на пары. Подобная систематизация хромосом из одной клетки называется кариотипом. При лабораторных исследованиях у каждого пациента анализируется 10–40 метафазных кариотипов. При подозрении на мозаицизм необходимо анализировать как большее число клеток, так и клетки других тканей.

    Показания для исследования кариотипа пробанда

      Множественные врожденные пороки развития и микроаномалии у новорожденных детей и их родителей.

      Олигофрения, задержка физического и нервно-психического развития в сочетании с врожденными аномалиями.

      Нарушение дифференцировки пола.

      Первичная и вторичная аменорея.

      Бесплодие.

      Женщины со спонтанными абортами, привычными самопроизвольными абортами, мертворождением.

      У родственников пробанда первой степени родства, который имеет структурные перестройки хромосом.

    Для выявления изменений в системе половых хромосом используются следующие экспресс–методы :

      Определение полового Х‑хроматина в интерфазных ядрах клеток буккального эпителия. Каждая клетка содержит только одну генетически активную Х‑хромосому. Цитологическим проявлением неактивной Х‑хромосомы служит хроматиновая масса (тельце Барра), обнаруживаемая на периферии интерфазного ядра. По количеству телец Барра можно судить о количестве неактивных Х‑хромосом. Например, в используемых клетках женского организма (46,ХХ ), при синдроме Клайнфельтера определяется 1 тельце Барра. В клетках мужского организма и в большинстве эпителиальных клеток при синдроме Тернера (45,Х0 ) половой Х‑хроматин отсутствует. Существует эмпирическое правило, согласно которому число телец полового хроматина равно числу Х‑хромосом минус 1 (В=Х–1 ).

      Определение Y ‑хроматина . В интерфазном ядре при окраске люминесцентными красителями (Q–метод) Y‑хромосома выглядит ярко флюоресцирующим скоплением хроматина. Пробы на Х- и Y‑хроматин не должны служить в качестве абсолютно достоверных для диагностики при патологическом изменении половых хромосом. Окончательный ответ может быть получен только при анализе кариотипа пациента.

    Показания для исследования полового хроматина

      Нарушение половой дифференцировки.

      Подозрение на синдромы Шерешевского–Тернера, Клайнфельтера.

      Аменорея.

      Бесплодие.

      Внутриутробное определение пола при Х–сцепленных заболеваниях.

    Клинический полиморфизм хромосомных синдромов обусловлен различными аномалиями аутосом и половых хромосом. При хромосомных синдромах отмечается резкий дисбаланс генов, но общее влияние генома создает полиморфизм клинических признаков.

    Особенности проявления аутосомной патологии

      Характеризуется множественными врожденными пороками развития.

      Сопровождается грубым дефектом интеллекта или резкой задержкой психомоторного развития.

      Продолжительность жизни больных не значительна.

      Диагностика данной патологии возможна с рождения.

    Среди числовых аномалий аутосом возможно рождение детей с трисомией 21 хромосомы (синдром Дауна), 13 хромосомы (синдром Патау), 18 хромосомы (синдром Эдвардса), реже встречаются трисомии 8 и 9 хромосом. Трисомия по группам А и В хромосом среди живорожденных не описана.

    Среди несбалансированных структурных аномалий возможно рождение детей с синдромами частичной моносомии, например синдром кошачьего крика (делеция короткого плеча 5 хромосомы), синдром Вольфа–Хиршкорна (делеция короткого плеча 4 хромосомы), синдром Арбели (делеция короткого плеча 13 хромосомы), синдром Лежена (делеция короткого плеча 18 хромосомы). Случаем частичной моносомии являются кольцевые хромосомы. Возможна частичная трисомия 6–11 хромосом.

    Особенности проявления патологии половых хромосом

      Характерно изолированное поражение внутренних органов и микроаномалии.

      Интеллект снижен незначительно.

      Продолжительность жизни обычная.

    Среди числовых аномалий половых хромосом с наибольшей частотой встречаются моносомия Х‑хромосомы (45,Х0 – типичная форма синдрома Шерешевского–Тернера), трисомия Х‑хромосомы у женщин (47,ХХХ ) и дисомия у мужчин (47, XXY – синдром Клайнфельтера), возможна дисомия Y‑хромосомы (47, XYY ).

    Из структурных аномалий возможно обнаружение в кариотипе Х‑изохромосомы, состоящей из двух длинных плеч (46, Xi (Xq )), делеции Х‑хромосомы (46, Xdel (X ) (q11 )), кольцевых Х‑хромосом (46, Х , r (Х )).

    В большинстве случаев хромосомные аномалии носят спорадический характер, т.е. возникают в виде новой мутации при нормальном кариотипе обоих родителей пробанда. В таких случаях риск для сибсов оценивается по эмпирическим данным для каждого типа аномалий с учетом возраста матери. Риск выше при носительстве сбалансированной перестройки у матери, чем у отца. В ряде случаев при обследовании родителей пробанда у кого-либо из них обнаруживается мозаицизм, т.е. часть клеток имеет такой же аномальный кариотип, как у пробанда. Риск для сибсов рассчитывается по формуле:

    х

    ×К

    2–х

    где х – доля аномального клеточного клона, К – коэффициент элиминации несбалансированных зигот в эмбриогенезе (при синдроме Дауна К=½).

    В настоящее время существуют различные схемы лечения целого ряда хромосомных синдромов, включающие гормональную терапию и хирургическую коррекцию дефектов. Важным для профилактики рождения детей с хромосомными синдромами является генетическое консультирование семьи, исследование кариотипа родителей, расчет риска повторного рождения ребенка с хромосомной патологией, использование комплекса прямых методов пренатальной диагностики (ультразвуковое сканирование плода, исследование альфа–фетопротеина, амниоцентез, хорионбиопсия, кордоцентез и др.) для решения вопроса о целесообразности сохранения заведомо неперспективной беременности.

    Частота фенотипических признаков при синдроме Шерешевского–Тернера к периоду полового созревания (регулярная и мозаичные формы)

    Признаки

    Частота (%)

    1. Низкий рост

    2. "Щитовидная" грудная клетка

    3. Широко расставленные соски

    4. Деформация тела грудины

    5. Тестоватый тургор тканей

    6. Антимонголоидный разрез глаз

    7. Эпикант

    8. Деформация ушных раковин

    9. Крыловидная складка на шее

    10. Лимфатические отеки

    11. Олигофрения

    12. Первичная аменорея

    13. Сахарный диабет

    14. Обилие пигментных пятен

    16. Аркообразное небо

    17. Низкий рост волос на шее

    18. Гипоплазия или аномальное строение наружных гениталий

    19. Врожденные аномалии мочевыводящей системы

    20. Врожденные пороки сердца

    21. Аномалии скелета